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                                                            Introduction 

Hooke’s Law (Hooke 1635-1703) is well-known as the linear relation of stress 𝜎 𝑎𝑛𝑑 𝑠𝑡𝑟𝑎𝑖𝑛 𝜀 with 

elastic materials: 

(1) σ=𝑎𝜀 

But it is also known for a long time, that this linearity is (nearly) right only for smaller values of 𝜀. 

As I use data of different authors with different units of measurement and also for simplification I will 

use terms x for strain ε and y for stress σ. And as it is usual in mathematical statistics, i will distinguish 

data-values (e.g. y) and hypothetical values (e-g. �̂�). Hooke’s Law then is 

(2) 𝑦 ̂ = ax                                                                         

My generalized hypothesis is: 

(3)  �̂� = 𝒂𝒙𝒆−𝒃𝒙 

that means, that a linear growing process ax (a>0) – Hooke’s process - is superposed by an exponential 

declining or dying process 𝑒−𝑏𝑥 (b>0). 

Hooke’s process (2) is a first approximation of process (3). For writing 𝑒−𝑏𝑥 as Taylor-series, we have  
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and so �̂� ~𝑎𝑥 for small values of x. 

In this paper I will show with three characteristic experiments of centrically pressed prisms and cubes 

the corresponcence of data and hypothesis (3). 

A following part II will give the generalization for noncentrically pressed prisms and cubes  and 

resulting laws of the bending pressure zone. 

And a part III gives the distribution of the stress in the cross-section of a beam in dependence  

on the strength of the material and of the loading. 

 

  



Experiments and Results 

(I) Experiment of the University of Technology Munich [𝟒] 

In figure 1a the stress-strain lines of centrically pressed prisms in short-time pressing are given (in 

reduced size). 

 

Fig. 1a: Experimental stress-strain curves 

To make use of this data-basis to test my hypothesis (3), I chose as data-points n=7 (x,y)-values from 

each of  the four curves B160, B300, B450 and B600 - see table 1.   

Table 1: Stress-strain relationship of centrically pressed prisms 

 x .2 .4 .6 .8 1 1.2 1.4 

B160 y .28 .50 .64 .75 .83 .88 .92 

B300 y .21 .39 .55 .68 .785 .865 .93 

B450 y .16 .325 .47 .60 .715 .815 .90 

B600 y .145 .29 .43 .555 .67 .765 .86 

 x is strain ε(in promille); y is stress σ/strenth 𝐾𝑏 of prism; 

 B160 means strength 160(kg/𝑐𝑚2) of concrete; similar B300etc. 

  



The mathematical problem is the optimal approximation of experiment and hypothesis. This is done 

by the method of least sqares of Gauss 

Q(a,b)=∑(𝑦𝑖 − 𝑦�̂�)
2 

(summing from 1 to n). The optimal parameters a and b are found with the iterative non-linear 

simplex-method of Nelder and Mead [1]. The results are: 

                                                            B160          �̂�= 1.563 x 𝑒−0.6263𝑥                                                              

(4)                                                       B300          �̂�= 1.159  x 𝑒−0.3953𝑥                                                         

                                                            B450          �̂�= 0.9009 x 𝑒−𝑜,2372𝑥 

                                                            B600          �̂�= 0.797 x 𝑒−0.1835𝑥 

See figure 1b. 

 

Fig. 1b: Stress-strain curves ŷ=a×e(-bx) 

The corresponding straight lines of Hooke are �̂�=ax, i.e. �̂� =1.563x for B160 etc. That are the tangents 

to the curves (4) in the point (x,y)=(0,0). 

(II)  Experiment of  the University of London: City and Guilds College [𝟐] 

Prentis concludes in his paper ([2], p.75), that  „the basic differences between the various plastic theories 

for reinforced beams result mainly from differences of opinion as to  the form of the curve, and it is 

hoped that applications of the above analysis will help to resolve the problem“. 

Figur 2a gives a copy of Prentis‘ result-curve on a scale of 1:1. To make the analogous calculation as in 

experiment (I), I chose n=8 data-points of this curve, which are given in table 2.  

  



Table 2: Stress-strain data from the experiment of Prentis 

x .5 1 1.5 2 2.5 3 3.5 3.83 

y 1.659 2.723 3.404 3.744 4.000 4.084 4.042 3.914 

x=1 corresponds to strain ε=0.001(inches/inch) 

y=1 corresponds to stress σ=1000(lb/sq.in.) 

The resulting optimal stress-strain curve is: 

(5) �̂�= 3.789 x 𝑒−0.3422𝑥  

which is plotted in figure 2b. Hooke’s straight line is �̂�=3.789x. 

 

Fig.2a: Experimental stress-strain curve Fig.2b: Stress-strain curve ŷ=a×e(-bx) 

 

(III)  Experiment of the University of Technology Munich with dε/dt=const. and with cracks [𝟑] 

In figure 3a (in reduced size) the result of the experiment is given: Cube strength W=244 kp/𝑐𝑚2,

𝑑𝜀/dt=0.1%/1.875min. 

 

Fig. 3a: Experimental stress-strain curve 

  



For computation n=27 data-points (x,y) are read from the curve in figure 3a and are given in table 3. 

Table 3: Stress-strain data from experiment with dε/dt=0.1%/1.875min. 

x .2   .4  .6   .8   1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8   3 

y .212 .382 .523 .630 .717 .773 .821 .845 .853 .856 .857 .845 .821 .798 .768 

x   3.2   3.4   3.6   3.8 4   4.5 5   5.5 6   6.5   7   7.5    

y .702 .649 .583 .508 .456 .345 .274 .214 .167 .131 .104 .088    

x is strain ε (in promille); y is stress σ/strength W of cube 

At first the parameters a and b of formula (3) were estimated with all 27 data; the result  

                                                                                  �̂�=1.383x𝑒−0.5996𝑥   

is given in figure 3b. 

 

Fig. 3b: Stress-strain curve ŷ=a×e(-bx); parameter-estimation with all data 

Surely one can not claim, that the correspondence of data-points and hypothetical curve is good. 

So  I supected, that the reason is the crack at 𝑥0~3 (see figure 3a) and computed the parameters a and b 

with formula (3) only with the 15 data points (x,y)=(0.2,0.212), . . . ,  (3,0.768) –up to the crack. The 

result is  

(6) (A) �̂�=1.188x𝑒−0.5093𝑥 

and is given as curve A in figure 3c. 

We have a very good correspondence of data and hypothesis up to the point of crack. Then the declining 

of the data-values y is stronger than that of  the hypothetical curve (6) or: the growing of the growing 

part ax of formula (3), that is y=ax,  is too strong. So I made the simplest alternative hypothesis: With 

the crack  the growing part of formula (3) „cracks“ too:  ax → a𝑥0=const. for x≥ 𝑥0. So for x≥ 𝑥0 I 

made the hypothesis  

                                                                       �̂�=c𝑒−𝑏𝑥,     c=a𝑥0 

and computed the parameters c and b with the n=13 data-points (x,y)=(3.0,0 .768) . .   ,  (7.5,0.088). The 

result is 

(7) (B) �̂�=3.640𝑒−0.5148𝑥  

 curve B in figure 3c. Correspondence of data and hypothesis is again very good, I think. 



 

Fig.3c Stress-strain curves A: before the crack, B: after the crack 

Comparison of formulae (A) and (B) show:  

 (1) the exponents b are (practically) the same: b=0.51 

 (2) a𝑥0=1.188*3=3 564 from (A) is (practically) c=1.213*3=3.640 (from (B)) 

(Consider that 𝑥0 is not exaxtly fixed and that the data-points are result of one experiment). 

So the final formula is (see figure 3d) 

(8a)     �̂�=1.20x 𝑒−0.51𝑥 for x≤𝑥𝑜 

and 

(8b)     �̂�=1.20𝑥0𝑒−0.51𝑥 for x≥ 𝑥0 

 
Fig. 3d: Combined stress-strain curve 

i.e. up to the cracking point  𝑥0 Hooke’s linear growing process ax=1.20x is superposed by an exponential dying 

process with parameter 0.51 according to formula (8a). In the cracking point Hooke’s growing process „cracks 

down“ to a constant a𝑥0; a simple exponential dying process (8b) is left – with the same parameter 0.51 as before.. 
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