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Introduction

As stated in [5] Part Il, the distribution of stress g in the bending pressure zone of a beam is identical with
the distribution of stress in a non-centric loaded prism in such a manner, that the strain &, , remote to
the loading, is zero (see figure 1).

In a huge number of experiments with the variables
o .
&( /oo)=€0 (in contrast to &, = 0)

x=1-P,, the center of loading; NB! The width of the prism d=150cm (see [5], Part I, figure 2) is
standardized to 1: 0< x=<1=d/150,

af,’:&/l(b, the (relative) loading ; K, (kg/cm?) is the utmost strength of the prism with centric loading -
Generally: Index 0 means ,,experiment with &,=0",

in [2] the experimental results are given in dependence on strength of cube W=W 20 (kg/cm?; cube
length 20 cm) and k=0/05 (B for break). See also tables 1, 2, 3 and figures 4, 5 and 6 of [5], part Il.

With these experimental data 3 hypothesis were postulated in [5], part Il (hypothetical values are signed
as ¥ in contrast to experimental values v — as it is usus in statistics).

—~ —a(
Hypothesis H1: Bo(W,x) =1/3 +(1/2-1/3) e *Goo) b

Hypothesis H2: af (W, k) = (2/3)k + (1/3) e~ %Gop) b
Hypothesis H3: &(g,) = a g, e 2%
The good coincidence of experiments and hypotheses can be seen in the tables and figures of [5], part II.
Distribution of stress o in an eccentric pressed prism (with £,=0)
The (relative) stress y(x)=c(x)/Kp is

Hypothesis H4:  y(x)= Axe B*


https://www.hookes-law-generalized.de/part2/index.html

Prism

y(x)=a(x)/Kp=f(x)
fol f(x)dx =6/K,=al

Fig. 1: Sketch of an eccentrically pressed prism with center of pressure x=1-f, so, that &, =0

see figure 1. That means: The stress-function a(x) for eccentric pressed prisms is of the same
mathematical form as for centric pressed prisms, as K}, as well as W, is a constant for a fixed
experiment.

The two parameters A and B are estimated by minimizing according to the method of least squares

of Gauss

Di=(f, y(x)dx -&5)? and

Do=[(J ey Gy dx) / f; y G — (1 = B)]
together by minimizing the objective function D=D;+D,.
The values of &(’,’ and ,30 are given in [5], part Il, tables 2 and 1 for a series of values of W and of k.
For example for W=300 and x=0,9 we have 0.653 and 0.374.

The minimum of D is found by the iterative nonlinear Simplex-method of Nelder and Mead [1]. The
resulting optimal parameters A and B of hypothesis H, are registerd together with figure 2 for W=80,
figure 3 for W=160, figure 4 for W= 300, figure 5 for W=450 and figure 6 for W= 600 (kg/cm?). To every

value of W seven values of k= ai =0.3, 0.4, ... 0.9 were chosen for stress-lines. For k > 0.9 and W< 80|
B

do not put my hand in the fire with my formulae. This may already be seen in figure 5b of [5], Part Il for

k = 0.9 and small values of W.
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Fig. 2: W=80 kg/cm? . stress-lines y = Axe 5% and strain &, according to H3 ([5], part Il): K=ag,e P&

K 0.3 0.4 0.5 0.6 0.7 0.8 0.9
A 0.4082 0.5601 0.7577 1.0230 1.4540 2.1750 3.5630
B 0.0306 0.0663 0.1726 0.3295 0.5850 0.9321 1.4280
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Fig. 3: W=160 kg/cm? . stress-lines y = Axe 5% and strain &, according to H3 ([5], part 1l): K=ag,e D%
K 0.3 0.4 0.5 0.6 0.7 0.8 0.9
A 0.4057 0.5551 0.7325 0.9661 1.3080 1.8530 2.7990

B 0.0199 0.0556 0.1284 0.2532 0.4463 0.7235 1.1050
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Fig. 4: W=300 kg/cm? . stress-lines y = Axe 5% and strain &, according to H3 ([5], part Il): k=ag,e P&
K 0.3 0.4 0.5 0.6 0.7 0.8 0.9
A 0.4035 0.5470 0.7070 0.8996 1.1530 1.5110 2.0590
B 0.0126 0.0358 0.0805 0.1586 0.2810 0.4581 0.7037
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Fig. 5: W=450 kg/cm? . stress-lines y = Axe 5% and strain &, according to H3 ([5], part Il): K=ag,e P&
K 0.3 0.4 0.5 0.6 0.7 0.8 0.9
A 0.4019 0.5415 0.6904 0.8587 1.0600 1.3170 1.6680
B 0.0071 0.0217 0.0485 0.0966 0.1708 0.2792 0.4309
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Fig. 6: W=600 kg/cm? . stress-lines y = Axe 5% and strain &, according to H3 (([5], part Il): K=ag,e~P%o

K 0.3 0.4 0.5 0.6 0.7 0.8 0.9
A 0.4014 0.5380 0.6813 0.8341 1.0080 1.2110 1.4650
B 0.0054 0.0125 0.0306 0.0573 0.1038 0.1691 0.2636

In the left part of the figures the disrtribution of stressy is given.

The strain ¢ is zero for x=0 according to the experiments. For x=1 strain e=¢; can be computed with
formulae k=agye ~P%0 of [5], part II. This is shown in the right part of the figures. For example in the
experiment with W=300 and some values of kK we get (see also figure 4):

K 3 A .5 .6 v .8 9
& .39 .55 72 .92 1.16 1.45 1.86

Distribution of stress o in the bending pressure zone of a beam

According to Part Il the distribution of the stress in the bending pressure zone of a beam is identical with
that of a corresponding eccentric pressed prism with £,=0: The side of the prism with =0 (y-axis in figure
1) is equivalent with the neutral axis of the beam (see figure 7).

X
T T .

1
bending pressure zone

bz [ e — —— — - —Xgu vy=neutral axis of the beam
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Fig. 7: Sketch of the bending pressure zone of a beam

In figures 8, ..., 12 the lower part give the stress-lines in the bending pressure zones of the beams. They
simply are the mirror-images of the stress lines of the corresponding prisms, reflected at the mirror with

y=X.

The curves r%:asoe‘bgo in the upper part of the figures are the same as those of the corresponding prisms
(in a somewhat modified scale).
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Fig. 8: W=80 kg/cm?. Strain ¢, and
stress-lines o /K,
In the bending pressure zone 0 < x <1

Fig. 9: W=160 kg/cm?. Strain &, and
stress-lines o /K,
In the bending pressure zone0 < x <1
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Fig 10: W=300 kg/cm?. Strain &, and
stress-lines o /K,
In the bending pressure zone 0< x <1

Fig. 11: W=450 kg/cm?. Strain ¢, and
stress-lines o /K,
In the bending pressure zone 0< x <1



Fig. 12: W=600 kg/cm?. Strain ¢, and
stress-lines o /K,
In the bending pressure zone 0< x < 1

Comment

The experiments, the results of which are used in this analysis, were directed by Risch [2] at the
University of Technology Munich. The evaluation of the data was done under the direction of Scholz,
who also made two hypotheses on the distribution of the stress in beams ([3] and [4]).
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