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Introduction 

As stated in [5] Part II, the distribution of stress 𝜎 in the bending pressure zone of a beam is identical with 

the distribution of stress in a non-centric loaded prism in such a manner, that the strain 𝜀2  , remote to 

the loading, is zero (see figure 1). 

In a huge number of experiments with the variables 

𝜀1(° °°⁄ )=𝜀0 (in contrast to 𝜀2 = 0) 

x=1-𝛽0, the center of loading;    NB! The width of the prism d=150cm (see [5], Part II, figure 2) is 

standardized to 1:  0≤ 𝑥=≤1=d/150, 

𝛼0
𝑝

=𝜎̅/𝐾𝑏, the (relative) loading ;  𝐾𝑏(kg/𝑐𝑚2)  is the utmost strength of the prism with centric loading - 

Generally:  Index 0 means „experiment with 𝜀2=0“, 

in [2] the experimental results are given in dependence on strength of cube W=𝑊20 (kg/𝑐𝑚2; cube 

length 20 cm) and 𝜅=𝜎̅/𝜎̅𝐵 (B for break). See also tables 1, 2, 3 and figures 4, 5 and 6 of [5], part II. 

With these experimental data 3 hypothesis were postulated in [5], part II (hypothetical values are signed 

as 𝑣 in contrast to experimental values 𝜈 – as it is usus in statistics). 

Hypothesis H1:    𝜷̂𝟎(W,𝜿) =1/3 +(1/2-1/3) 𝒆−𝒂(
𝑾

𝟏𝟎𝟎
) 𝜿𝒃 

Hypothesis H2:   𝜶̂𝟎
𝑷(𝑾, 𝜿) = (2/3)𝜿 + (𝟏/𝟑) 𝒆−𝒂(

𝑾

𝟏𝟎𝟎
) 𝜿𝒃 

Hypothesis  H3:   𝜿̂(𝜺𝟎) = a 𝜺𝟎 𝒆−𝒃𝜺𝟎 

The good coincidence of experiments and hypotheses can be seen in the tables and figures of [5], part II.  

Distribution of stress 𝝈 𝒊𝒏 𝒂𝒏  𝒆𝒄𝒄𝒆𝒏𝒕𝒓𝒊𝒄 𝒑𝒓𝒆𝒔𝒔𝒆𝒅 𝒑𝒓𝒊𝒔𝒎 (𝒘𝒊𝒕𝒉 𝜺𝟐=0) 

The (relative)  stress  y(x)=𝜎(x)/𝐾𝑏 is 

Hypothesis H4:     y(x)= Ax𝒆−𝑩𝒙 

 

https://www.hookes-law-generalized.de/part2/index.html


 
Fig. 1: Sketch of an eccentrically pressed prism with center of pressure x=1-𝛽𝑜 so, that 𝜀2 =0 

 

see figure 1.  That means: The stress-function 𝜎(𝑥) for eccentric pressed prisms is of the same 

mathematical form as for centric pressed prisms, as 𝐾𝑏, as well as W, is a constant  for a fixed 

experiment.  

The two parameters A and B are estimated  by minimizing according to the method of least squares 

of Gauss  

𝐷1=(∫ 𝑦(𝑥)𝑑𝑥
1

0
 -∝̂0

𝑃)2                                 and    

𝐷2=[(∫ 𝑥𝑦(𝑥)
1

0
𝑑𝑥) / ∫ 𝑦(𝑥)𝑑𝑥 − (1 − 𝛽̂0)

1

0
]

2
 

together by minimizing  the objective function  D=𝐷1+𝐷2.  

The values of 𝛼̂0
𝑃 and 𝛽̂0 are given in [5], part II, tables 2 and 1 for a series of values of W and of 𝜅. 

For example for W=300 and 𝜅=0,9 we have 0.653 and 0.374. 

The minimum of D is found by the iterative nonlinear Simplex-method of Nelder and Mead [1]. The 

resulting optimal parameters A and B of hypothesis 𝐻4 are registerd together with figure 2 for W=80, 

figure 3 for W=160, figure 4 for W= 300, figure 5 for W=450 and figure 6 for W= 600 (kg/𝑐𝑚2). To every 

value of W seven values of 𝜅=  
𝜎̅

𝜎̅𝐵
 = 0.3, 0.4, … 0.9 were chosen for stress-lines. For 𝜅 > 0.9 and W< 80 I 

do not put my hand in the fire with my formulae. This may already be seen in figure 5b of [5], Part II for 

𝜅 = 0.9 𝑎𝑛𝑑 𝑠𝑚𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑊. 



 

Fig. 2: W=80 kg/𝑐𝑚2 . stress-lines 𝑦 = 𝐴𝑥𝑒−𝐵𝑥  and strain 𝜀𝜊 according to H3 ([5], part  II):  𝜅̂=a𝜀𝜊𝑒−𝑏𝜀𝜊  

𝜅 0.3 0 .4 0 .5 0 .6 0 .7 0.8 0.9 
A 0.4082 0.5601 0.7577 1.0230 1.4540 2.1750 3.5630 
B 0.0306 0.0663 0.1726 0.3295 0.5850 0.9321 1.4280 

 

 

Fig. 3: W=160 kg/𝑐𝑚2 . stress-lines  𝑦 = 𝐴𝑥𝑒−𝐵𝑥  and  strain 𝜀𝜊 according to H3 ([5], part  II):  𝜅̂=a𝜀𝜊𝑒−𝑏𝜀𝜊  

𝜅 0.3 0 .4 0 .5 0 .6 0 .7 0.8 0.9   
A 0.4057 0.5551 0.7325 0.9661 1.3080 1.8530 2.7990 
B 0.0199 0.0556 0.1284 0.2532 0.4463 0.7235 1.1050 

 

 



 

Fig. 4: W=300 kg/𝑐𝑚2 . stress-lines  𝑦 = 𝐴𝑥𝑒−𝐵𝑥  and  strain 𝜀𝜊 according to H3 ([5], part  II): 𝜅̂=a𝜀𝜊𝑒−𝑏𝜀𝜊  

𝜅 0.3 0 .4 0 .5 0 .6 0 .7 0.8 0.9  
A 0.4035 0.5470 0.7070 0.8996 1.1530 1.5110 2.0590 
B 0.0126 0.0358 0.0805 0.1586 0.2810 0.4581 0.7037 

 

 

 

Fig. 5: W=450 kg/𝑐𝑚2 . stress-lines 𝑦 = 𝐴𝑥𝑒−𝐵𝑥  and  strain 𝜀𝜊 according to H3 ([5], part  II):  𝜅̂=a𝜀𝜊𝑒−𝑏𝜀𝜊  

𝜅 0.3 0 .4 0 .5 0 .6 0 .7 0.8 0.9  
A 0.4019 0.5415 0.6904 0.8587 1.0600 1.3170 1.6680 
B 0.0071 0.0217 0.0485 0.0966 0.1708 0.2792 0.4309 

 



 

Fig. 6: W=600 kg/𝑐𝑚2 . stress-lines 𝑦 = 𝐴𝑥𝑒−𝐵𝑥  and  strain 𝜀𝜊 according to H3 (([5], part  II):  𝜅̂=a𝜀𝜊𝑒−𝑏𝜀𝜊  

𝜅 0.3 0 .4 0 .5 0 .6 0 .7 0.8 0.9 
A 0.4014 0.5380 0.6813 0.8341 1.0080 1.2110 1.4650 
B 0.0054 0.0125 0.0306 0.0573 0.1038 0.1691 0.2636 

 

In the left part of the figures the disrtribution of stress y is given.   

The strain 𝜀 is zero  for x=0 according to the experiments. For x=1 strain 𝜀=𝜀0 can be computed with 

formulae 𝜅̂=a𝜀0𝑒−𝑏𝜀0 of [5], part II. This is shown in the right part of the figures. For example in the 

experiment with W=300 and some values of 𝜅̂ we get  (see also figure 4): 

𝜿̂ .3 .4 .5 .6 .7 .8 .9 
𝜺𝟎 .39 .55 .72 .92 1.16 1.45 1.86 

 

Distribution of stress 𝝈 in the bending pressure zone of a beam 

According to Part II the distribution of the stress in the bending pressure zone of a beam is identical with 

that of a corresponding eccentric pressed prism with 𝜀2=0: The side of the prism with 𝜀=0 (y-axis in figure 

1) is equivalent with the neutral axis of the beam (see figure 7). 

 

Fig. 7: Sketch of  the bending pressure zone of a beam 

In figures 8, …, 12 the lower part give the stress-lines in the bending pressure zones of the beams. They 

simply are the mirror-images of the stress lines of the corresponding prisms, reflected at the mirror with 

y=x. 

The curves 𝜅̂=a𝜀0𝑒−𝑏𝜀0 in the upper part of the figures are the same as those of the corresponding prisms 

(in a somewhat modified scale). 



 

 

 
 

Fig. 8: W=80 kg/𝑐𝑚2. Strain 𝜀𝜊 and  

stress-lines 𝜎/𝐾𝑏  

In the bending pressure zone  0 ≤ 𝑥 ≤ 1 

Fig. 9: W=160 kg/𝑐𝑚2. Strain 𝜀𝜊 and  

stress-lines 𝜎/𝐾𝑏  

In the bending pressure  zone 0 ≤ 𝑥 ≤ 1 



 

 
 

Fig 10: W=300 kg/𝑐𝑚2. Strain 𝜀𝜊 and 

stress-lines 𝜎/𝐾𝑏  

In the bending pressure zone 0≤ 𝑥 ≤ 1 

Fig. 11: W=450 kg/𝑐𝑚2. Strain 𝜀𝜊 and 

stress-lines 𝜎/𝐾𝑏  

In the bending pressure zone 0≤ 𝑥 ≤ 1 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comment 

The experiments, the results of which are used in this analysis, were directed by Rüsch [2] at the 

University of Technology Munich. The evaluation of the data was done under the direction of Scholz, 

who also made two hypotheses on the distribution of  the stress in beams ([3] and [4]). 
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Fig. 12: W=600 kg/𝑐𝑚2. Strain 𝜀𝜊 and 
stress-lines 𝜎/𝐾𝑏  

In the bending pressure zone 0≤ 𝑥 ≤ 1 

https://www.hookes-law-generalized.de/


 

 

 

 

 

 

 

 

 

 

 

 


